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Abstract

This paper studies the numerical solution of multi-dimensional nonlinear degenerate reaction–diffusion differential
equations with a singular force term over a rectangular domain. The equations may generate strong quenching singular-
ities. Our work focuses on a variable temporal step Peaceman–Rachford splitting method with an adaptive moving mesh in
space. The temporal and spatial adaptation is implemented based on arc-length type of estimations of the time derivative
of the solution since the time derivative of the solution approaches infinity when the quenching occurs. The multi-dimen-
sional problem is split into a few one-dimensional problems and the splitting procedure can also be parallelized so that the
computational time is significantly reduced. The physical monotonicity of the solution and stability of this variable step
moving mesh scheme are analyzed for the time away from the quenching. As stability analysis may not be valid when
it is very close to the quenching, thus an exact linear problem is introduced to justify the stability near the quenching time.
Finally we provide some numerical examples to illustrate our results as well as to demonstrate the viability and efficiency of
the method for the quenching problem or other problems with point singularities. We will also show the significant reduc-
tion in computational time required with parallel implementation of the algorithm on a computer with multi-CPU.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Many physical phenomena in science and engineering are modeled by partial differential equations with
solutions that exhibit localized nonuniformities or singularities in a finite time T. An example is the nonlinear
reaction–diffusion equations of quenching type (see e.g. [21,1,9,24]), in which the nonlinear forcing term blows
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up, or the solution quenches and extinguishes, in a finite time when certain environmental parameters exceed
their limits at certain special points. Quenching phenomena are distinguished for their important physical phe-
nomenon, superconductive material, engineering interpretations and unique applications in the manufacturing
industry.

Finite difference methods have played important roles in solving the above-mentioned partial differential
equations numerically. The numerical procedures, however, are often complicated by two facts. One is the
strong singularity, such as the rate of the change of the solution blows up at a finite time, developed on
relatively small time intervals or spatial length scales. Proper mesh adaptation is necessary to reproduce the
singularity. The other is the high dimension which causes tremendous increases in the amount of computations
and the complexity of adaptation. Under this circumstance, splitting techniques offer efficient and effective
ways to convert higher-dimensional problems into a set of lower-dimensional equations and at the same
time offer easy parallelization to largely reduce computational time. It seems to us that such a splitting can
be done relatively easier by using the finite difference method.

Considerable efforts have been devoted for computation of quenching solution, or estimates of criti-
cal quenching domains of nonlinear reaction–diffusion equations similar to the quenching model (cf.
[5,8,16,23,34,11]). Most of them are for one-dimensional problems. Multi-dimensional problems require even
much more effort. Most of the existing computations are conducted either based on the reduced problem, that
is, the stationary problem by removing the time variable or using uniform temporal and spatial meshes (cf.
[9]). Moving mesh approaches have had success for a few blow-up parabolic differential equations
[4,5,16,34]. The mesh moving technique is generally well understood for one-dimensional problems but signif-
icant challenges remain for multi-dimensional problems (see [12,3,6,7,27,19]). For example, the construction
of a moving mesh equation cannot be guided completely by physical arguments. The mesh moving equation
is derived based on a minimization of a so-called mesh-energy integral. In higher dimension, it is related to
harmonic mapping based methods supplemented with a monitor function to detect the steep transitions in
the solution. The high-dimensional monitor function may be tricky to select. The mesh equation may be more
complicated than the original equation we want to solve. There are little analysis available about the method
due to its difficulty in higher dimensions. These motivate our splitting moving mesh method which is a com-
bination of splitting and mesh-moving. Due to splitting adaptation can always be done in a one-dimensional
setting and thus various one-dimensional adaptive techniques can be applied easily and more successfully. The
splitting moving mesh procedure can be seen as a special case of general high-dimensional mesh moving tech-
niques. Similar idea such as using tensor-product grid appears recently (see [36]). They have also shown the
effectiveness of this type of methods through a few examples. Nevertheless, we may not expect that splitting
or tensor-product type of techniques will work for any high-dimensional problems with various singularity
patterns (see also a counter example in [36]) if we do not introduce additional transforms or additional treat-
ment. However, due to the point singularity nature of the quenching model the splitting method works well
and is very efficient. The parallel implementation is natural and has been done on regular mesh for the splitting
procedure. We shall then incorporate it into our splitting moving mesh algorithm. Numerical experiments will
demonstrate its good performance on a multi-processor computer.

Physically the solution of the quenching model is monotonically increasing in time. It is important for our
finite difference method to preserve this property. In [11] monotonic property is considered for a finite differ-
ence scheme under a uniform spatial mesh. In this paper we shall implement our splitting moving mesh
method in a way that the idea of proof in [11] can still be used to show the monotonicity of the solution under
the (nonuniform) moving spatial mesh. Of course, nonuniform mesh still has to be treated carefully in the
analysis. We shall also consider the stability under the variable step moving meshes when it is away from
the quenching. When it is near quenching the technique of above analysis is no longer applied. We then intro-
duce an equivalent linear problem to justify the stability of our method. Such theoretical discussion is very
difficult for general moving mesh techniques based on minimization of multi-dimensional mesh-energy inte-
gral. We shall also show our good computational results and efficiency of our parallel splitting moving mesh
algorithm in the last section.

The paper is organized as follows. In Section 2 we will introduce the Peaceman–Rachford splitting method
and its combination with moving mesh adaption. We will then analyze the monotonicity of the algorithm in
Section 3 and the stability in Section 4. Numerical experiments will be given in Section 5.
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2. The quenching model and the adaptive splitting scheme

Let D = (0, 1) · (0, 1), oD be its boundary, and let X = D · (0, T), S = oD · (0, T) where 0 < T <1. We
consider the following degenerate reaction–diffusion problems:
/ðx; yÞut ¼
uxx

a2
þ uyy

b2
þ f ðuÞ; ðx; y; tÞ 2 X; ð2:1Þ

uðx; y; tÞ ¼ 0; ðx; y; tÞ 2 S; uðx; y; 0Þ ¼ u0ðx; yÞ; ðx; yÞ 2 D; ð2:2Þ
where /(x, y) = (a2x2 + b2y2)q/2 (q P 0). We shall assume that u0(x, y) = 0 which is pretty common for the
quenching combustion model and that the source function, f(u), is strictly increasing for 0 6 u < 1 with
f ð0Þ ¼ f0 > 0; lim
u!1�

f ðuÞ ¼ 1.
The model is transformed from that in a general rectangular domain fð~x; ~yÞ 2 ð0; aÞ � ð0; bÞg by the variable
transformation ~x ¼ ax and ~y ¼ by. In some specific applications (see [2,28]), u represents the temperature in the
combustion channel, x and y are coordinates perpendicular and parallel to the channel walls, respectively. The
initial temperature u0 P 0 and is usually very small (it is thus usually assumed to be zero). The function /(x, y)
represents certain singularity in the temperature transportation speed which causes the degeneracy in the
differential equation (2.1) (see [10,15,28] for more details). The solution u of (2.1), (2.2) is said to quench if there
exists a finite time T such that
supfjutðx; y; tÞj : ðx; yÞ 2 Dg ! 1 as t! T �. ð2:3Þ

The value T is then defined as the quenching time [1,2,24]. A necessary condition for quenching to occur is
maxfjuðx; y; tÞj : ðx; yÞ 2 Dg ! 1� as t! T�. ð2:4Þ

It has been shown that such a T exists only when certain spatial references, such as the size of D, reach their
critical limits. A domain D* is called the critical domain if the solution of (2.1), (2.2) exists for all time when
D ˝ D*, and (2.4) occurs when D ˚ D* for a finite T.

Consider a mesh on the domain D with nodes (xi, yj), 0 6 i 6 I + 1 and 0 6 j 6 J + 1. We replace the spatial
derivatives uxx(xi, yj) and uyy(xi, yj) by finite differences
ðuðxi; yjÞÞ�xx̂ ¼
uðxiþ1; yjÞ � uðxi; yjÞ

hi
�

uðxi; yjÞ � uðxi�1; yjÞ
hi�1

� ��
�hi
and
ðuðxi; yjÞÞ�yŷ ¼
uðxi; yjþ1Þ � uðxi; yjÞ

kj
�

uðxi; yjÞ � uðxi; yj�1Þ
kj�1

� ��
�kj
with hi = xi+1 � xi, kj = yj+1 � yj, �hi ¼ ðhi þ hi�1Þ=2 and �kj ¼ ðkj þ kj�1Þ=2. Let ui,j(t) be an approximation of
the solution at the mesh point (xi, yj, t), i = 0, 1, . . . , I + 1 and j = 0, 1, . . . , J + 1. Further, let
vðtÞ ¼ ðu1;1ðtÞ; u2;1ðtÞ; . . . ; uI;1ðtÞ; . . . ; u1;J ðtÞ; . . . ; uI;J ðtÞÞT
be the solution and
gðvÞ ¼ ðg1;1ðtÞ; g2;1ðtÞ; . . . ; gI;1ðtÞ; . . . ; g1;J ðtÞ; . . . ; gI ;J ðtÞÞ
T

be the nonhomogeneous term with gi,j(t) = f(ui,j(t))//(xi, yj). Removing truncation error terms, we obtain the
semi-discretized system
vtðtÞ ¼ PvðtÞ þ RvðtÞ þ gðvðtÞÞ; 0 < t < T ; ð2:5Þ
vð0Þ ¼ v0; ð2:6Þ
where P and R are IJ · IJ matrices:
P ¼ 1

a2
diagðAjÞj¼1;���;J ; R ¼ 1

b2
~A;
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Aj ¼

nj
1;1 nj

1;2

nj
2;1 nj

2;2 nj
2;3

� � � � � � � � �
nj

i;i�1 nj
i;i nj

i;iþ1

� � � � � � � � �
nj

I;I�1 nj
I ;I

0
BBBBBBBBB@

1
CCCCCCCCCA
2 RI�I ;

nj
i;i ¼ � 2

hi�1hi/i;j
;

nj
i;i�1 ¼ 1

�hihi�1/i;j
;

nj
i;iþ1 ¼ 1

�hihi/i;j
;

8>>><
>>>:

~A ¼

g1;1E1 g1;2E1

g2;1E2 g2;2E2 g2;3E2

� � � � � � � � �
gj;j�1Ej gj;jEj gj;jþ1Ej

� � � � � � � � �
gJ ;J�1EJ gJ ;J EJ

0
BBBBBBBB@

1
CCCCCCCCA
2 RJ�J ;

where

gj;j ¼ � 2
kj�1kj

;

gj;j�1 ¼ 1
�kjkj�1

;

gj;jþ1 ¼ 1
�kjkj
;

8>><
>>: and Ej ¼

1
/1;j

1
/2;j

� � �
1

/I ;j

0
BBBB@

1
CCCCA 2 RI�I .
We denote h = minihi, k = minjkj, /min = mini,j/i,j (=/1,1 if q P 0). The formal solution of (2.5), (2.6) can
thus be written as (preassuming that P and R are not changing with time in a small time interval or within one
discrete time step)
vðtÞ ¼ EðtCÞv0 þ
Z t

0

Eððt � sÞCÞgðvðsÞÞds; 0 < t < T ;
where E(Æ) = exp(Æ) is the matrix exponential and C = P + R. In principle, different splitting methods, includ-
ing ADI and LOD schemes, can be formulated via combinations of a particular numerical quadrature for the
integral, together with a proper exponential splitting and an appropriate approximation to E [33]. For exam-
ple, using a trapezoidal rule for the integral we obtain
vðtÞ � EðtCÞv0 þ
t
2

gðvðtÞÞ þ EðtCÞgðv0Þð Þ. ð2:7Þ
Then the Peaceman–Rachford splitting method (cf. [29,32,33]) can be formulated from approximating E(tC) by
pðtÞ ¼ I � t
2

R
� ��1

I � t
2

P
� ��1

I þ t
2

P
� �

I þ t
2

R
� �

. ð2:8Þ
We can easily verify that
kpðtÞ � EðtCÞk2 ¼ Oðt3Þ

in a neighborhood of t = 0 (see [32]). So the resulting splitting scheme for the partial differential equation
would be of second order accuracy.

Based on (2.7) and (2.8), we obtain the following variable step adaptive Peaceman–Rachford splitting
scheme:
vnþ1 ¼ I � sn

2
R

� ��1

I � sn

2
P

� ��1

I þ sn

2
P

� �
I þ sn

2
R

� �
vn þ

sn

2
gðvnÞ

� �
þ sn

2
gðvnþ1Þ; ð2:9Þ

~vnþ1 ¼ Ipvnþ1; ð2:10Þ
where ~vnþ1 is the solution defined on the mesh after vn+1, sn is the variable temporal step size. g(vn+1) in the
right hand side of (2.9) may be approximated by g(w(n)), where w(n) is an explicit approximation of vn+1, which
may be given as
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wðnÞ ¼ vn þ snðvtÞn ¼ vn þ snðCvn þ gðvnÞÞ ð2:11Þ

with C = P + R. Ip is a matrix associated with a bi-pth order polynomial interpolant, for example (cf. Fig. 2.1),

(i) Bi-linear interpolant:
~vðX i; Y jÞ ¼ ð1� aÞð1� bÞvðxi; yjÞ þ að1� bÞvðxiþ1; yjÞ þ abvðxiþ1; yjþ1Þ þ ð1� aÞbvðxi; yjþ1Þ; ð2:12Þ
where
0 6 a ¼ X i � xi

hi
6 1; 0 6 b ¼

Y j � yj

kj
6 1.
If (Xi, Yj) locates in a different rectangular region the definition of a and b may be modified but we can always
have 0 6 a 6 1 and 0 6 b 6 1. Based on the properties of coefficients a and b we see that
j~vðX i; Y jÞj 6 maxfjvðxi; yjÞj; jvðxiþ1; yjÞj; jvðxi; yiþ1Þj; jvðxiþ1; yjþ1Þjg
or
kI1k1 6 1. ð2:13Þ

(ii) Bi-quadratic interpolant:
~vðX i; Y jÞ ¼ ð1� b1 � b2Þð1� a1 � a2Þvðxi�1; yj�1Þ þ ð1� b1 � b2Þ a1vðxi; yj�1Þ þ a2vðxiþ1; yj�1Þ
� �

þ b1 ð1� a1 � a2Þvðxi�1; yjÞ þ a1vðxi; yjÞ þ a2vðxiþ1; yjÞ
� �

þ b2 ð1� a1 � a2Þvðxi�1; yjþ1Þ þ a1vðxi; yjþ1Þ þ a2vðxiþ1; yjþ1Þ
� �

; ð2:14Þ
where
0 6 a1 ¼
ðX i � xi�1Þðxiþ1 � X iÞ

hi�1hi
6 1; 0 6 a2 ¼

ðX i � xi�1ÞðX i � xiÞ
ðhi�1 þ hiÞhi

6 1;

0 6 b1 ¼
ðY j � yj�1Þðyjþ1 � Y jÞ

kj�1kj
6 1; 0 6 b2 ¼

ðY j � yj�1ÞðY j � yjÞ
ðkj�1 þ kjÞkj

6 1.
Noting that
1� a1 � a2 ¼
ðX i � xiÞðX i � xiþ1Þ

hi�1ðhi�1 þ hiÞ
< 0; 1� b1 � b2 ¼

ðY j � yjÞðY j � yjþ1Þ
kj�1ðkj�1 þ kjÞ

< 0;
we generally do not have iI2i1 6 1 although the sum of the coefficients is equal to one.

Subsequently our analysis of monotonicity and stability will straightforwardly apply only to the bi-linear
interpolation. Nevertheless, numerical experiments indicate that these properties may still hold for bi- quadratic
interpolation, especially when the mesh movement is not too dramatic in each step (noting that both
i i+1i–1

j–1

j

j+1

hh

k

k

ii–1

j–1

j

(X  ,Y  ) i  j

(x  ,y  )i  j

Fig. 2.1. Labeling of points used in the two-dimensional interpolation.
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j1 � a1 � a2j and j1 � b1 � b2 j are small if the new mesh point (Xi, Yj) does not move too far from the
previous one (xi, yj)). In terms of computational accuracy the bi-quadratic interpolant is a better choice.

The splitting algorithm provides an efficient way for the multi-dimensional computation and significant
amount of operations can be saved. Since the strong quenching singularity causes large derivatives in both
temporal and spatial directions, it is more efficient to use variable temporal steps sn and nonuniform spatial
meshes (hi and kj) in light of the profile of ut (see quenching characterization (2.3), (2.4)). We are going to use
the one-dimensional moving mesh technique for the spatial mesh and temporal step selection which has largely
been studied and has successful application to other combustion and blow-up problems. We shall adopt the
following arc-length monitor function on vt when it is not too large:
mðvt; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

ts

q
; ðx; y; tÞ 2 X; ð2:15Þ
where s may be time t or spatial variable x or y. When vt gets very large the arc-length monitor function may
move the spatial mesh too fast and the computational result may not be ideal. Usually, a parameter is intro-
duced to control the spatial mesh, that is, replacing (2.15) for s being x or y by the following:
mðvt; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2v2

ts

q
; ðx; y; tÞ 2 X. ð2:16Þ
We shall choose a = jvtj�1 in our computations and through our numerical experiments this choice of a works
well for this quenching model. We would like to remark that other monitor functions may possibly work as
well. For example, take the extreme case of (2.16) where a is very large, that is, let m(vt, s) = ajvtsj. Our numer-
ical experience indicates that this derivative monitor function performs well too with a little bit extra mesh
moving control. To be more focused in the paper we will simply use the arc-length type of monitor functions
(2.15) and (2.16).

We also remark that unlike usual moving mesh PDE techniques our spatial mesh moving strategy is inde-
pendent of time marching (cf. [18,7,27] for such implementation ideas). Once the spatial mesh at the time t = tn

is done we march to the next time step tn+1 with the spatial mesh fixed. Once we have done the time marching
we then adjust (move) the mesh within the time step tn+1 according to the monitor function (2.16) for spatial
variables (cf. Fig. 2.2). We then march to the next time step and so on. Hence, we have the same mesh in each
time marching step so that the discussion of monotonicity of the numerical solution in the temporal direction
may possibly be carried out more easily. Otherwise the monotonicity property may be much more difficult to
achieve. The monotonic increase of the solution in time holds for the continuous quenching model. We shall
show later that at every temporal step before quenching the numerical solution is also monotonically increas-
ing if the temporal step size is small enough.

By requiring the maximal arc-lengths in temporal neighboring intervals [tn�2, tn�1] and [tn�1, tn] be equiv-
alent [12,18,11], we obtain from (2.15) the following equations for sn,
s2
n ¼ s2

n�1 þ ððvtÞn�1 � ðvtÞn�2Þ
2 � ððvtÞn � ðvtÞn�1Þ

2
; n ¼ 2; 3; . . . ; ð2:17Þ
with s0, s1 given. Instead of using sophisticated conventional smoothing processes in standard adaptive algo-
rithms, we choose a minimal temporal step size controller smin, 0 < smin� s0, to avoid sudden changes in time
marching or any unnecessarily large number of computations near the blow-up of vt. In spatial directions we
Fig. 2.2. The profile of the mesh in x-direction with moving mesh technique.
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shall use equidistribution principle to produce efficient computational meshes. We have no need to design a
sophisticated multi-dimensional equidistribution principle since our splitting method splits a multi-
dimensional problem to a number of one-dimensional problems. Below we use a conventional one-
dimensional equidistribution principle based on the monitor function (2.16):
Z xiþ1

xi

mðut; xÞdx ¼ 1

I þ 1

Z xIþ1

x0

mðut; xÞdx;
Z yjþ1

yj

mðut; yÞdy ¼ 1

J þ 1

Z yJþ1

y0

mðut; yÞdy;
where xi and yj are nonuniform mesh points in x and y directions, respectively. For example, along each line
y = yj and starting from the boundary point (x0,j, yj) on the line we can easily determine x1,j, . . ., xI,j using
above formula, a finite difference approximation for utx and a numerical integration formula (based on the
piecewise linear approximation of ut). We can then take a new ith x-coordinate xnew

i by the following way:
xnew
i ¼ xi;j0

; where j0 is an index such that max
i
jðutÞi;j0

j ¼ max
i;j
jðutÞi;jj.
A new jth y-coordinate ynew
j ¼ yi0;j can be determined similarly, where yi,0, yi,1, . . . , yi,J are y-coordinate of

mesh points along the line x = xi. If we do not want to move the mesh too much or too little we may imple-
ment an average moving strategy. xnew

i ¼ 1
J

PJ
j¼1xi;j and similarly ynew

j ¼ 1
I

PI
i¼1yi;j.

In the next two sections we shall discuss the monotonic increasing property and the stability of the variable
step adaptive splitting scheme. Some ideas in [11] for uniform mesh may not work for nonuniform mesh. Also,
the nonuniform mesh is moving with the time so both matrices P and R depend on time. We would like to
mention here that the time step size selection criterion (2.17) involves the solution at the previous two consec-
utive time steps. So we shall keep the spatial mesh unchanged during these two consecutive time steps and
adapt the temporal step once every two steps for easy implementation.
3. The monotonicity of the discrete solution

The positivity and monotone increasing properties have been characterized as important features of the
quenching solutions of nonlinear reaction–diffusion equations such as (2.1), (2.2) (cf. [1,2,9,24]). Thus, it is bet-
ter to preserve these basic properties in our numerical method. Usually in the quenching model we have v0 = 0.
We shall assume v0 = 0 in the discussion of monotonicity in this section.

Lemma 3.1. If
sn

h2/min

< a2 and
sn

k2/min

< b2; ð3:18Þ
then matrices
I � sn

2
P ; I � sn

2
R; I þ sn

2
P ; and I þ sn

2
R

are nonsingular. Also, I � sn
2

P and I � sn
2

R are monotone and inverse-positive. I þ sn
2

P and I þ sn
2

R are

nonnegative.

Proof. The proof of the lemma is straightforward and can be deduced from the properties of the matrices P

and R [11]. h

Lemma 3.2. If
sn

h2/min

<
1

2
a2 and

sn

k2/min

<
1

2
b2;
then
gð0Þ þ s2
0

4
PRgð0Þ > 0.
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Proof. Denote an IJ-vector
U ¼ /�1
1;1;/

�1
2;1; . . . ;/�1

I ;J

� �T

. ð3:19Þ
Noting that g(0) = f(0)U and f(0) > 0 (see the assumptions at the beginning of Section 2) we only need to con-

sider ~U ¼ Uþ s2
0

4
PRU. Let ~U ¼ ð~U1;1; ~U2;1; . . . ; ~UI;J ÞT, where ~Ui;j, 1 6 i 6 I and 1 6 j 6 J, represents the compo-

nent of the IJ-vector ~U. For 1 < j < J, we have
~U1;j ¼ /�1
1;j þ

s2
0

4a2b2
�

2/�1
1;j

h1h0

ðRUÞ1;j þ
/�1

1;j

�h1h1

ðRUÞ2;j

" #

¼ /�1
1;j þ

s2
0

4a2b2
�

2/�1
1;j

h1h0

/�1
1;j /

�1
1;j�1

�kjkj�1

�
2/�2

1;j

kjkj�1

þ
/�1

1;j /
�1
1;jþ1

�kjkj

 !"

þ
/�1

1;j

�h1h1

/�1
2;j /

�1
2;j�1

�kjkj�1

�
2/�2

2;j

kjkj�1

þ
/�1

2;j /
�1
2;jþ1

�kjkj

 !#
;

~Ui;j ¼ /�1
i;j þ

s2
0

4a2b2

/�1
i;j

�hihi�1

ðRUÞi�1;j �
2/�1

i;j

hihi�1

ðRUÞi;j þ
/�1

i;j

�hihi
ðRUÞiþ1;j

" #

¼ /�1
i;j þ

s2
0

4a2b2

/�1
i;j

�hihi�1

/�1
i�1;j/

�1
i�1;j�1

�kjkj�1

�
2/�2

i�1;j

kjkj�1

þ
/�1

i�1;j/
�1
i�1;jþ1

�kjkj

 !"

�
2/�1

i;j

hihi�1

/�1
i;j /�1

i;j�1

�kjkj�1

�
2/�2

i;j

kjkj�1

þ
/�1

i;j /�1
i;jþ1

�kjkj

 !
þ

/�1
i;j

�hihi

/�1
iþ1;j/

�1
iþ1;j�1

�kjkj�1

�
2/�2

iþ1;j

kjkj�1

þ
/�1

iþ1;j/
�1
iþ1;jþ1

�kjkj

 !#
;

~UI ;j ¼ /�1
I ;j þ

s2
0

4a2b2

/�1
I�1;j

�hI hI�1

ðRUÞI�1;j �
2/�1

I;j

hIhI�1

ðRUÞI;j

" #

¼ /�1
I ;j þ

s2
0

4a2b2

/�1
I ;j

�hI hI�1

/�1
I�1;j/

�1
I�1;j�1

�kjkj�1

�
2/�2

I�1;j

kjkj�1

þ
/�1

I�1;j/
�1
I�1;jþ1

�kjkj

 !"

�
2/�1

I ;j

hIhI�1

/�1
I ;j /

�1
I;j�1

�kjkj�1

�
2/�2

I ;j

kjkj�1

þ
/�1

I ;j /
�1
I ;jþ1

�kjkj

 !#
.

Similar expressions can be derived for the cases j = 1 and j = J. Using the condition of the lemma it follows
that ~Ui;j >

5
8
/�1

i;j > 0 which leads to gð0Þ þ s2
0

4
PRgð0Þ > 5

8
gð0Þ > 0. h

In the next lemma we will show that quenching (i.e., there exists one component of vn P 1) would not occur
at the first time step if s0 is small enough.

Lemma 3.3. If s0

h2/min
< a2, s0

k2/min
< b2 and h < 1=a

ffiffiffiffiffiffiffiffiffiffiffiffi
2f ð0Þ

p
(or k < 1=b

ffiffiffiffiffiffiffiffiffiffiffiffi
2f ð0Þ

p
) then for given v0 = 0, we have

that all components of v1 < 1.

Proof. Let w = (1, 1, . . . , 1)T. It follows immediately that
v1 ¼ I � s0

2
R

� ��1

I � s0

2
P

� ��1

I þ s0

2
P

� �
I þ s0

2
R

� � s0

2
gð0Þ þ s0

2
g s0gð0Þð Þ
due to the fact that v0 = 0. We further notice that g(0) = f(0)U, where U is an IJ-vector defined in (3.19). Let

0 < d0 < 1 such that d0 >
s0f ð0Þ
/min

(such a d0 exists due to the assumptions of the lemma), and denote M = f(d0).

Thus, we have s0gð0Þ 6 s0f ð0Þ
/min
6 d0; and these indicate that
gðs0gð0ÞÞ 6 gðd0Þ ¼ MU.



K. Liang et al. / Journal of Computational Physics 215 (2006) 757–777 765
Hence,
v1 � w ¼ I � s0

2
R

� ��1

I � s0

2
P

� ��1

I þ s0

2
P

� �
I þ s0

2
R

� � s0

2
gð0Þ þ s0

2
g s0gð0Þð Þ � w

6 I � s0

2
R

� ��1

I � s0

2
P

� ��1

s1;
where
s1 ¼
s0

2
I þ s0

2
P

� �
I þ s0

2
R

� �
gð0Þ þ s0

2
I � s0

2
P

� �
I � s0

2
R

� �
gðd0Þ � I � s0

2
P

� �
I � s0

2
R

� �
w.
In order to see that s1 is negative, we look into each component of s1.
From the condition we observe that s0

/min
< a2h2 or b2k2. It follows therefore� �� � � �� �
 

s0

2
I þ s0

2
P I þ s0

2
R gð0Þ þ s0

2
I � s0

2
P I � s0

2
R gðd0Þ

 

 6 ðf ð0Þ þMÞminfa2h2; b2k2gw.
Let the vector
a ¼ � I � s0

2
P

� �
I � s0

2
R

� �
w ¼ �wþ s0

2
Cw� s2

0

4
PRw.
Denote a = (a1,1, a2,1, . . . , aI,J)T, where ai,j is the (i + (j � 1)J)th component of a. Similarly to the argument in
Lemma 3.2, we may show that ai,j = � 1, for 1 < i < I and 1 < j < J, and ai,j < � 1 otherwise. This indicates
that
s < �wþ ðf ð0Þ þMÞminfa2h2; b2k2gw < �wþ 2f ð0Þminfa2h2; b2k2gw < 0
if h2 < 1/2a2f(0) or k2 < 1/2b2f(0). This completes the proof. h

The lemma indicates that the solution at the first time step will not quench (i.e., all components of v1 < 1).
Our next lemma will indicate that if the solution vn is before quenching, i.e. all components of vn < 1, and if sn

is sufficiently small then vn increases monotonically.

Lemma 3.4. Let all components of vn < 1 (n P 0). If sn

h2/min
< 1

2 a2, sn

k2/min
< 1

2 b2 and sk is sufficiently small for all

n P 0 then vn+1 > vn for all n > 0 before quenching.

Proof. Using Lemmas 3.1 and 3.2 and completely following the proof of Lemma 3.6 given in [11] we can
obtain the lemma. h

Obviously bi-linear interpolation will keep the monotonicity of the solution sequence vn, that is, if vn+1 P vn

then ~vnþ1 ¼ I1vnþ1 P I1vn ¼ ~vn. Combining above results we obtain the following theorem.

Theorem 3.1. Let v0 = 0. If sn

h2/min
< 1

2 a2, sn

k2/min
< 1

2 b2 for all n P 0 and h < 1=a
ffiffiffiffiffiffiffiffiffiffiffiffi
2f ð0Þ

p
or k < 1=b

ffiffiffiffiffiffiffiffiffiffiffiffi
2f ð0Þ

p
, and

if sn is sufficiently small then the sequence {vn}nP0 or f~vngnP0 produced by the variable step adaptive Peaceman–

Rachford splitting (2.9) plus bi-linear interpolation increases monotonically before quenching.

If we use the bi-quadratic interpolation the corresponding matrix I2 may have negative element which may
affect the monotonicity. Nevertheless, our numerical results indicate that the monotonicity in time still holds
within the range of accuracy. Theoretically we may possibly construct monotonicity-preserving interpolation
(cf. [22]), which usually involves polynomial interpolations of higher degree.

4. Stability

Stability of the splitting has been a difficult issue when solving nonlinear blow-up type or quenching type
problems, especially when using variable time steps and nonuniform meshes. Most analysis of the Peaceman–
Rachford splitting or its variants is conducted for uniform time steps and uniform spatial meshes (cf. [13]). In
[35,32] variable time steps may be included in stability analysis but a certain kind of commutative condition of
two splitting operators or matrices has to be assumed. In [20] a variant of the Peaceman–Rachford splitting is
analyzed and commutative condition may be removed but uniform time step is assumed. A one-sided
Lipschitz condition is also assumed in [20]. In [11] the stability of the variable step splitting scheme (2.9)
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on a uniform spatial mesh is analyzed with the nonlinear term frozen. In this section, we will do the analysis
for variable time steps on a nonuniform spatial mesh. We will freeze the source term g first. Freezing the
source term g is equivalent to assuming that it does not depend on the solution. As far as the stability is con-
cerned, this is equivalent to setting g as zero. In other words, we only establish the stability of the discretiza-
tion of (uxx + uyy)//(x, y). When we include a linearized g in the analysis then this linear part of g might
dominate the Laplacian term near the quenching time and then the stability analysis done from assuming
g(v) frozen is no longer apply near the quenching time. We then consider an exact linearized model and
use it to justify the stability near the quenching time. Our numerical experiments demonstrate that the scheme
is indeed stable even if it is near the quenching time.

4.1. Stability away from quenching

We consider in this subsection the stability for the variable step adaptive Peaceman–Rachford method
(2.9). We will first frozen the nonlinear term g(v). Then we will remark the case where g(v) varies.

Theorem 4.1. Let
s‘
h2/min

<
1

2
a2;

s‘
k2/min

<
1

2
b2; ð4:20Þ
and s‘ be sufficiently small for all 0 6 ‘ 6 n. Then the variable step adaptive Peaceman–Rachford method (2.9)

plus the bi-linear interpolation (with the nonlinear term frozen) is stable in the sense of the maximum norm, i.e.,
kznþ1k1 6 ch;kkz0k1;

where z0 ¼ v0 � �v0 is an initial perturbation or error, z‘ ¼ v‘ � �v‘ (0 6 ‘ 6 n + 1) is the perturbation arising from

the initial perturbation z0, and ch,k is a positive constant independent of the number of time steps n and of the time

step sizes s‘ (0 6 ‘ 6 n).

Proof. Since the nonlinear term is frozen (i.e., g(v) is treated as a constant) the perturbation z‘+1 satisfies
z‘þ1 ¼ I1 I � s‘
2

R‘

� ��1

I � s‘
2

P ‘

� ��1

I þ s‘
2

P ‘

� �
I þ s‘

2
R‘

� �
z‘. ð4:21Þ
Under the assumption (4.20) the sum of the absolute value of entries in each row of I þ s‘
2

P and I þ s‘
2

R is less
than or equal to one. That is
I þ s‘
2

P
��� ���

1
6 1 and I þ s‘

2
R

��� ���
1
6 1. ð4:22Þ
Furthermore, we have k s‘
2

Pk1 < 1 due to the assumption (4.20). When s‘ is sufficiently small, we can easily
obtain
I � s‘
2

P
� ��1

¼ I þ s‘
2

P þ s‘
2

P
� �2

þ � � �
and a similar expansion for I � s‘
2

R
� ��1

. Therefore,
I � s‘
2

P
� ��1
����

����
1
6 1þ Oh;kðs2

‘Þ and I � s‘
2

R
� ��1
����

����
1
6 1þ Oh;kðs2

‘Þ. ð4:23Þ
Using (2.13), (4.22) and (4.23) in (4.21), we then obtain
kznþ1k1 6 ð1þ Oh;kðs2
nÞÞkznk1 6 � � � 6 ð1þ Oh;kðs2

nÞÞ � � � ð1þ Oh;kðs2
0ÞÞkz0k1

6 1þ Oh;kðs2
n þ s2

n�1 þ . . .þ s2
0Þ

� �
kz0k1 6 ch;kkz0k1. � ð4:24Þ
From the proof we can see that if s‘ (0 6 ‘ 6 n) are sufficiently small we may have ch,k < 2.

Remark 4.1. In the case that g(v) varies we will have the following linearized relation:
z‘þ1 ¼ I1 I � s‘
2

R‘

� ��1

I � s‘
2

P ‘

� ��1

I þ s‘
2

P ‘

� �
I þ s‘

2
R‘

� �
z‘ þ

s‘
2

gvz‘
� �

þ s‘
2

z‘ þ s‘ðC‘z‘ þ gvz‘Þð Þ
� �

.
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We notice that there is at least a s‘ factor associated with extra terms arising from varied g(v). So we ex-
pect that the stability still holds if it is away from quenching, i.e. v is away from one. When v approaches
one gv tends to infinity and the situation is not clear. Conjectured in [25] and shown for one-dimensional
cases in [17,14] that 1 � u is proportional to ðT � tÞ

1
1þh when q = 0 and f(u) = (1 � u)�h, where T is the

quenching time. This conjecture of quenching rate is also demonstrated by our numerical experiments in
Section 5. For this f(u) and q = 0, gv = h(1 � u)�(h+1) is proportional to (T � t)�1. Therefore, s‘gv would
not be small as t is close to the quenching time T. The argument used in the proof of Theorem 4.1 may
not be valid.
4.2. Stability near the quenching time

We would like to consider how the discrete solution behaves near the quenching time. As we mentioned
above near the quenching s‘gv need not be very small and the stability analysis conducted earlier is no longer
valid. So we look for alternative ways to justify the stability. To avoid technical difficulties of our stability
justification we shall fix the nonuniform spatial mesh and study the semi-discrete difference scheme (2.5)
and the splitting scheme (2.9). To further simplify the discussion we shall also assume that f(u) = 1/(1 � u)h

(h > 0), which is a usual choice of f(u) among quenching models discussed by other researchers (see e.g.
[21,9,24,1]). The discussion in this section does not intend to provide a rigorous proof but to provide a justi-
fication of the stability near the quenching time for the adaptive splitting algorithm (2.9), (2.10). We first write
the differential equation (2.1) to a mathematically equivalent linear form
1 Th
ut ¼
1

a2/
uxx þ

1

b2/
uyy þ

1

/ð1� ueÞhþ1
ð1� uÞ; ð4:25Þ
where ue(x, y, t) is the exact solution of (2.1), (2.2). So the solution of (4.25), (2.2) is the same as that of (2.1),
(2.2) due to the uniqueness of the solution (which can be deduced from the maximum principle [30]). It can
also be shown from the maximum principle that 0 6 ue < 1 and ue increases in t. The semi-discretized scheme
(2.5) (in the component-wise form) of (4.25) reads
ðui;jÞt ¼ ðui;jÞ�xx̂ þ ðui;jÞ�yŷ þ
1

ð1� ðueÞi;jðtÞÞ
hþ1
ð1� ui;jÞ ð4:26Þ
satisfying boundary condition (2.2) and initial condition ui;jðtdÞ ¼ ud
i;jðtdÞ, where td = T � d (td 6 t < T is a

neighborhood of the quenching time T) and ud represents the solution of (4.26) with boundary and initial con-
ditions (2.2).

Lemma 4.1 (Discrete maximum principle). If wi,j(t)(L0 + ci,j(t)) P 0 (c P 0), where
L0wi;j ¼ ðwi;jÞt �
1

a2/i;j
ðwi;jÞ�xx̂ �

1

b2/i;j

ðwi;jÞ�yŷ ; /i;j > 0;
wi;jjt¼td
P 0 for all nodes (i, j) in D, and wi,j P 0 for all the boundary nodes in oD, then wi,j P 0 holds for all t

(T > t > td) and all nodes (i, j) in D.

Proof. The idea of proof may be found in many standard text books, for example [30]. Assume that the con-
clusion is false; then there is a first ~t > td such that wi;jð~tÞ < 0 for some ð~i;~jÞ in the domain D, wi,j P 0 for
t 2 ½td;~tÞ and ði; jÞ 2 D, and ðw~i;~jÞtð~tÞ 6 0. Moreover, we can assume that wi;jð~tÞ attains its minimum at
ði; jÞ ¼ ð~i;~jÞ and that there is at least one neighbor (ib, jb) of ð~i;~jÞ1 such that wib;jb

ð~tÞ is strictly less than
w~i;~jð~tÞ. We then have that ðw~i;~jð~tÞÞ�xx̂ þ ðw~i;~jð~tÞÞ�xx̂ is positive. Hence, ðL0 þ c~i;~jÞw~i;~jð~tÞ < 0, which, however, is a
contradiction. h
e neighbors of (i, j) is defined at the nodes: (i � 1,j), (i,j � 1), (i + 1,j) and (i,j + 1).
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Now we introduce a perturbation zi;jðtdÞ ¼ ui;jðtdÞ � �ui;jðtdÞ at the time t = td, where ui,j(t) is the solution of
(4.26) and �ui;jðtÞ is the perturbed solution due to the initial perturbation zi,j(td). Then the perturbation zi,j(t)
satisfies the following perturbation equation:
ðzi;jÞt ¼
1

a2/i;j
ðzi;jÞ�xx̂ þ

1

b2/i;j

ðzi;jÞ�yŷ �
1

/i;jð1� ðueÞi;jðtÞÞ
hþ1

zi;j ð4:27Þ
with boundary condition zi,j = 0 for all boundary nodes (i, j) in oD. We can then construct a barrier function
Zi;jðtÞ ¼ max
i;j
jzi;jðtdÞj � zi;jðtÞ.
Then it is not difficult to verify that
L0 þ
1

/i;jð1� ðueÞi;jðtÞÞ
hþ1

 !
Zi;jðtÞ ¼

1

/i;jð1� ðueÞi;jðtÞÞ
hþ1

max
i;j
jzi;jðtdÞj > 0.
and Zi,j(td) P 0 for nodes (i, j) in D and Zi,j(t) P 0 for all boundary nodes (i, j) in oD. From the discrete max-
imum principle we thus have Zi,j(t) P 0 for all nodes (i, j) in D and all t (T > t > td). We then obtain a stability
estimate for the semi-discretized problem (2.5)
jzi;jðtÞj 6 max
i;j
jzi;jðtdÞj ð4:28Þ
for T > t P td and all nodes (i, j) in D.
Next we consider the stability for the Peaceman–Rachford splitting scheme (2.9) applied to the exact lin-

earized problem (4.25) near quenching. Define the perturbation z‘ ¼ ð. . . z‘i;j . . .Þ at the time level t = t‘ as in
(4.21) and ci;jðtÞ ¼ 1

/i;jð1�ðueÞi;jðtÞÞ
hþ1 > 0. Then
z‘þ1 ¼ I � s‘
2

R
� ��1

I � s‘
2

P
� ��1

I þ s‘
2

P
� �

I þ s‘
2

R
� �

z‘ �
s‘
2

C‘z‘
� �

� s‘
2

C‘þ1z‘þ1; ð4:29Þ
where C‘ = diag(. . .ci,j(t‘) . . .) is a diagonal matrix. Hence
z‘þ1 ¼ I þ s‘
2

C‘þ1

� ��1

I � s‘
2

R
� ��1

I � s‘
2

P
� ��1

I þ s‘
2

P
� �

I þ s‘
2

R
� �

I � s‘
2

C‘

� �
z‘

¼ I þ s‘
2

C‘þ1

� ��1

I � s‘
2

R
� ��1

I � s‘
2

P
� ��1

I þ s‘
2

P
� �

I þ s‘
2

R
� �

I � s‘
2

C‘

� �
I þ s‘�1

2
C‘

� ��1

� I � s‘�1

2
R

� ��1

I � s‘�1

2
P

� ��1

I þ s‘�1

2
P

� �
I þ s‘�1

2
R

� �
I � s‘�1

2
C‘�1

� �
I þ s‘�2

2
C‘�1

� ��1

� � � I þ s‘0

2
C‘0þ1

� ��1

I � s‘0

2
R

� ��1

I � s‘0

2
P

� ��1

I þ s‘0

2
P

� �
I þ s‘0

2
R

� �
I � s‘0

2
C‘0

� �
z‘0
;

where ‘0 is the beginning step, i.e. t‘0
¼ td. We only need to estimate
A ¼ I � s‘
2

C‘

� �
I þ s‘�1

2
C‘

� ��1

I � s‘�1

2
C‘�1

� �
I þ s‘�2

2
C‘�1

� ��1

� � � I � s‘0þ1

2
C‘0þ1

� �
I þ s‘0

2
C‘0þ1

� ��1
����

����
1

ð4:30Þ

since other matrix factors can be estimated similarly to the proof of Theorem 4.1 preassuming that all the
conditions of Theorem 4.1 hold. When it is near quenching (ui,j)t should be very large and we expect that
the minimal time step (say, smin) has been reached. So we may assume s‘ = smin for all near-quenching steps
‘. Hence
I � s‘
2

C‘

� �
I þ s‘�1

2
C‘

� ��1
����

����
1
¼ max

i;j

j1� smin

2
ci;jðt‘Þj

j1þ smin

2
ci;jðt‘Þj

< 1;

I � s‘�1

2
C‘�1

� �
I þ s‘�2

2
C‘�1

� ��1
����

����
1
¼ max

i;j

j1� smin

2
ci;jðt‘�1Þj

j1þ smin

2
ci;jðt‘�1Þj

< 1;

� � � � � �

I � s‘0þ1

2
C‘0þ1

� �
I þ s‘0

2
C‘0þ1

� ��1
����

����
1
¼ max

i;j

j1� smin

2
ci;jðt‘0þ1Þj

j1þ smin

2
ci;jðt‘0þ1Þj

< 1.
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So if all conditions of Theorem 4.1 hold then we have
kz‘þ1k1 6 ch;kkz‘0
k1 ð4:31Þ
for all ‘ near the quenching.

5. Parallel implementation and numerical experiments

5.1. Parallel implementation

At each time step the splitting procedure can be easily parallelized as having been done by many people
usually on a uniform mesh. It is not difficult to incorporate the moving mesh into the parallel implementation.
We have carried out the parallel computation using open MP on an IBM p690 with shared memory. The Peac-
eman–Rachford splitting (2.9), (2.10) can be divided into four stages:
ðIÞ S1 ¼ I þ sn

2
R

� �
vn þ

sn

2
gðvnÞ

� �
;

ðIIÞ S2 ¼ ðI �
sn

2
P Þ�1ðI þ sn

2
P ÞS1;

ðIIIÞ S3 ¼ ðI �
sn

2
RÞ�1S2 þ

sn

2
gðwðnÞÞ;

ðIVÞ vnþ1 ¼ IpS3;
where each stage involves with a number of one-dimensional implementation. In stage (II) we solve a
one-dimension (tridiagonal) linear system at each grid line y = yj (1 6 j 6 J) and in stage (III) we solve a one-
dimension (tridiagonal) linear system at each grid line x = xi (1 6 i 6 I). The computation at one grid line is
independent of that at other grid lines and thus can be done simultaneously by assigning it to a number of pro-
cessors. So if we have m processors then in the x direction and y direction each processor is responsible for solving
J/m sets and I/m sets of tridiagonal systems respectively, as opposed to one processor solving all J and I sets of
tridiagonal systems. This parallel implementation would largely reduce the computational time. Once we
complete sweeps along both x and y directions we can then move the mesh in both x and y directions and use the
bi-linear or bi-quadratic interpolation to obtain vn+1 in stage (IV). Fig. 5.1 shows the reduction in computational
time when a number of processors are used to solve (2.1), (2.2) with a = b = 3 and under an 81 · 81 grid.

5.2. Computational experiments

In this subsection we present numerical experiments for two-dimensional examples, such as classical
quenching problem, degenerate quenching problem and a vortex model of superconductor. Throughout the
numerical results we always adopt N = 41 · 41 grid points in the splitting moving mesh method unless other-
wise stated. And the quenching time is determined by the criterion u > 1 � smin.

Example 5.2.1. Let h > 0 and D = (0,a) · (0,b). We first compute the critical domain of the following classical
quenching problem (which is equivalent to (2.1), (2.2) with q = 0, i.e. /(x, y) ” 1)
ut ¼ uxx þ uyy þ
1

ð1� uÞh
; ðx; yÞ 2 D; 0 < t < T ; ð5:32Þ

uðx; y; 0Þ ¼ 0; ðx; yÞ 2 D; ð5:33Þ
uð0; y; tÞ ¼ uða; y; tÞ ¼ uðx; 0; tÞ ¼ uðx; b; tÞ ¼ 0; 0 < t < T . ð5:34Þ
Our goal is to predict the critical sizes of the domain. The authors of [9,11] have investigated these in dif-
ferent ratio of a and b with h = 1. Their results were well matched except the case of ratio a/b = 1 (see [11];
Table 5.1).

For the case of a = b, we list, in Table 5.1, our newly computed results together with the existing results for
a comparison. Da is the critical size of the domain estimated in [9], Db is the critical size obtained in [11] with
uniform grid points 81 · 81, and Dc is our result with adaptive grid points N = 41 · 41, initial temporal step
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Fig. 5.1. Computational time vs. number of processors.

Table 5.1
A comparison of our numerical prediction with existing result given in [9,11] when Ratio a/b = 1 and h = 1. Da, Db and Dc are,
respectively, areas of the critical domain in [9,11] and newly computed critical domain (obtained by our adaptive method)

Ratio a/b Da Db Dc

1.000 4.45375 4.49606 4.45398
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s0 = 10�3 and minimal temporal controller smin = 10�4. (We can take smin smaller and the result is similar in
this case.) We note that even though we take fewer spatial grids and bigger temporal step size than [11] where
the uniform mesh is used, our approximate critical size is closer to that predicted in [9] than [11].

In Table 5.2, we present the corresponding quenching times for the different size of the domain D between
Db and Dc when the ratio of a/b is 1. The first two columns of Table 5.2 shows that if the domain size D has a
small fluctuation from 4.496062 to 4.496058 (DD = 4.496062 � 4.496058 = 4.0 · 10�6), the corresponding
quenching time may have a big change (jDTj = j5.725654 � 5.725954j = 3.0 · 10�4). This shows the sensitivity
Table 5.2
The quenching times for different domain sizes between Db and Dc obtained via the splitting moving mesh method when the ratio a/b = 1
and h = 1. The number of spatial grids and initial temporal step size as well as minimal temporal controller are the same as those in Table
5.1

a 2.120392 2.120391 2.110500 2.110451 2.110450 2.110446 2.110445

D 4.496062 (Db) 4.496058 4.454210 4.454003 4.453999 4.453982 4.453978 (Dc)
T 5.725654 5.725954 80.724993 225.954099 243.456150 407.393949 548.994850
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of the quenching times to the choice of the domain sizes. The closer the domain size approaches the critical
size, the more serious the sensitivity is. From 4.454003 to 4.453999, DD = 4.454003 � 4.453999 = 4.0 · 10�6

is the same as before, whereas jDTj = j225.954099 � 243.456150j = 17.502051. When the size changes from
4.453982 to 4.453978, jDTj = j407.393949 � 548.994850j = 141.600901.

Fig. 5.2 shows the evolution of the function u in main graphs and its derivative ut in sub-graphs for problem
(5.32), (5.34) with h = 1. The domain parameter a = 3.0 with ratio a/b = 1 is used. The four different stages of
u and ut, that is, t = 0.3, 0.6, 0.616402 and 0.61697 are displayed. Moreover, from the left profile of Fig. 5.4, it
can be observed that the peak of ut has reached 185.37580 when t = 0.61697. Further, Fig. 5.3 shows the spa-
tial adaptive mesh immediately before quenching at t = 0.61697 for the problem (5.32), (5.34) with a = 3.0, a/
b = 1 and h = 1. The close-up look of the central part of the adaptive mesh is depicted in the upper right cor-
ner of Fig. 5.3. Since the mesh is fully symmetric, the mesh sizes hi in the x-direction are displayed in the upper
left corner.

It is observed that the mesh refined in a small local region. In fact, from Figs. 5.2 and 5.4, we note the fact
that the spatial refinement has been restricted to the center of the whole domain where the solution develops
singularity when t approaches the quenching time T. This indicates the efficiency of our adaptive process.

To compute more accurately the quenching time and view more clearly the quenching phenomena and the
adaptive process, we may adopt an iterative stopping strategy. That is, where u > 1 � smin, we reduce the time
step size smin by half and continue the computation; when u > 1 � smin/2 we then reduce the time step to smin/
4; repeat this fashion until a given number of such iterations are reached. Adopting this iterative stopping
Fig. 5.2. The evolution profile of the functions u and ut until immediately before quenching (a = 3.0, a/b = 1, q = 0, h = 1, s0 = 0.001 and
smin = 1.0 · 10�5). Left: from top to bottom, t = 0.3, 0.6; Right: from top to bottom, t = 0.61402, 0.61697. The derivative functions ut are
displayed as a sub-graphs.
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mesh sizes hi only in the x-direction are displayed in the left sub-graph.

Fig. 5.4. The function ut and its contour map immediately before quenching (a = 3.0, a/b = 1, h = 1, s0 = 0.001, smin = 1.0 · 10�5 and
time of plotting t = 0.61697). We note that the peak has reached 185.37580. A contour map of ut is displayed as a sub-graph.
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strategy more accurate solution is obtained and depicted in Fig. 5.5 (with 81 · 81 grid points). We may find
evidently that the derivative function ut will blow up soon since the peak of ut reaches 3.1 · 109.

In Table 5.3, we consider the case of h = 1.5. Computational results about the critical sizes are listed for the
different ratios of a/b.



Fig. 5.5. The function ut and its spatial adaptive mesh immediately before quenching (a = 3.0, a/b = 1, h = 1 and N = 81 · 81). Left:
Adopting the iterative stopping strategy the peak of ut reaches 3.1 · 109. The spatial adaptive mesh immediately before quenching is
displayed as a sub-graph. Right: The close-up look of the spatial adaptive mesh is depicted.

Table 5.3
Numerical prediction of the critical size and the quenching time in the case of h = 1.5

Ratio a/b a D

0.5 1.44995 4.20471
1.0 1.82999 3.34886

The number of spatial grids and initial temporal step size as well as minimal temporal controller are the same as those in Table 5.1.
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In Fig. 5.6 we show the quenching rate, which was conjectured in Remark 4.1. We take the evolution of
lnð1� uða

2
; b

2
; tÞÞ (Y-axis) as a function of ln(T � t) (X-axis), where ða

2
; b

2
Þ is the quenching point and T is the

quenching time. The slope of the obtained curve approximately gives the quenching rate (conjectured as
1

1þh). The slope in the left profile of Fig. 5.6 is 1
2

when the problem (5.32), (5.34) with h = 1 is considered. Sim-
ilarly, the slope in the right is 1

4
when h = 3. Furthermore, we may estimate the constant of the quenching rate

at the quenching point, that is, (1 � u) = 1.2079(T � t)1/2 and (1 � u) = 1.4129(T � t)1/4 for the case of h = 1
and h = 3 respectively. These results verify the conjecture that quenching rate may be 1

1þh.
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Fig. 5.6. The quenching rate for the problem (5.32), (5.34). The slope of the curve measures the quenching rate. And the line connecting
the points is obtained by the least square approximation. Left: a = 3.0, a/b = 1 and h = 1; Right: a = 5.0, a/b = 1 and h = 3.
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Example 5.2.2. Consider the degenerate quenching-combustion problem
Fig. 5.
s0 = 0.
solutio
maxyu
x2 þ y2
� �q=2

ut ¼ uxx þ uyy þ
1

ð1� uÞh
; ðx; yÞ 2 D; 0 < t < T ; ð5:35Þ

uðx; y; 0Þ ¼ 0; ðx; yÞ 2 D; ð5:36Þ
uð0; y; tÞ ¼ uða; y; tÞ ¼ uðx; 0; tÞ ¼ uðx; b; tÞ ¼ 0; 0 < t < T . ð5:37Þ
where q 6¼ 0, h > 0 and D = (0,a) · (0,b). Fig. 5.7 depicts a close-up look of the solution u and its derivative ut

immediately before quenching in the case of q = 1. Since the effect of the coefficient (x2 + y2)q/2 in (5.35), the
location of quenching point shifts slightly from the center to (1.34605,1.34605). This well agrees with the exist-
ing predictions given in earlier investigations [11] using uniform mesh and more grid points.

Example 5.2.3. We consider the vortex model of the type II superconductor. Under some conditions, the mag-
netic field develops a particular type of singularity, which is named a vortex (see [31,26] and therein refer-
ences). In general, a vortex is not situated in a plane, but under some reasonable physical condition, the
planar approximation is relevant and in this case, the physical model can be given as
ut ¼ uxx þ uyy þ
1

ð1� uÞh
� e�ð1�uÞH 0; ðx; yÞ 2 D; 0 < t < T ; ð5:38Þ

uðx; y; 0Þ ¼ 0; ðx; yÞ 2 D; ð5:39Þ
uð�a; y; tÞ ¼ uða; y; tÞ ¼ uðx;�b; tÞ ¼ uðx; b; tÞ ¼ 0; 0 < t < T . ð5:40Þ
where D = (� a,a) · (� b,b) and H0 is the applied magnetic field assumed to be a constant. In this model, a
vortex reconnection with the boundary, i.e., 1 � u(x,y,t) = 0, means quenching. Actually, we may obtain
(5.32), (5.34) by setting H0 = 0 in (5.38), (5.40). Here we take h = 1 and H0 = 1.0.

Fig. 5.8 shows the profile of the solution u and its derivative ut immediately before quenching at
t = 0.77013. Although the source function f(u) in (5.38) has a different term �e�(1 � u)H0 compared with
one in (5.32), 1

ð1�uÞh is still the dominant part in the source function, especially when 1 � u approaches 0. So

the profile of the solution u and its derivative ut are similar as ones in (5.32), (5.34). However, the effect of
�e�(1�u)H0 to the quenching rate can not be ignored. Similarly as the strategy in Fig. 5.6 we take the evolution
of ln(1 � u(0, 0, t)) (Y-axis) as a function of ln(T � t) (X-axis), where (0, 0) is the quenching point and T is the
quenching time. In Fig. 5.9, the slope of the real line measures the quenching rate. And the dashed connecting
the points is obtained by the least square approximation with the fixed slope 1/2. From Fig. 5.9 we observe
that the slope of the quenching rate is tinily smaller than 1/2, which is the conjectured quenching rate 1/
(1 + h) for the case H0 = 0. Such a tiny difference is reasonable due to the effect of the negative finite term
�e�(1�u)H0.
7. The solution u and its derivative ut of the problem (5.35), (5.37) immediately before quenching (q = 1, a = 5.0, a/b = 1, h = 1,
001 and smin = 1.0 · 10�5). Left: The solution u is displayed in the main figure when t = 1.22570. The contour map of the numerical
n u is plotted as a sub-graph. Right: The derivative ut is displayed in the main figure when t = 1.22570. Projection of the function

t in x–ut plane is given as a sub-graph.



Fig. 5.8. The solution u and its derivative ut of the problem (5.38)–(5.40) immediately before quenching (a = 2.5, a/b = 1, h = 1, s0 = 0.001
and smin = 1.0 · 10�5). Left: The solution u is displayed in the main figure when t = 0.77013. Projection of the function maxyu in x–u plane
is given as a sub-graph. Right: The derivative ut is displayed in the main figure when t = 0.77013. Projection of the function maxyut in x–ut

plane is given as a sub-graph.
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6. Conclusion

In this paper we have applied a splitting moving mesh technique to a reaction–diffusion of quenching type.
The adaptive method, based on a Peaceman–Rachford splitting of the original higher-dimensional model, is
derived from a one-dimensional moving mesh technique using arc-length type of monitor function in terms of
ut (see (2.15) or (2.16)). The method may be seen as a special case of fully two-dimensional moving mesh
method based on a minimization of a mesh-energy integral, but much simpler in implementation. In the mon-
itor function (2.16), a time and solution dependent parameter a is chosen to be jutj�1 automatically. Such a
splitting moving mesh technique works well for the model problem with point singularities or defects. Due
to the one-dimensional feature of our method analysis can be conducted relatively easily. The physical mono-
tonicity of the solution can be proved for this algorithm under a special time marching implementation. Sta-
bility of the variable step moving mesh scheme is considered and a stability justification near the quenching
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time is included. The good performance of the method for this quenching model is demonstrated through a
number of quenching examples and a vortex model of type II superconductor. A parallel implementation
of the splitting scheme incorporated with the mesh moving is also demonstrated through an example. Three
or higher-dimensional problems can be implemented similarly.
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